Approximations of hypersingular integral equations by the quadrature method

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximations of hypersingular integral equations by the quadrature method

A numerical method is proposed and investigated for the hypersingular integral equations defined in Banach spaces. The hypersingular integral equations belong to a wider class of singular integral equations having much more stronger singularities. The proposed approximation method is an extension beyond the quadrature method. Moreover an error estimates theory is introduced for the hypersingula...

متن کامل

Hypersingular Integral Equations in Banach Spaces by the Quadrature Method

Abstract A new numerical method is introduced and investigated for the hypersingular integral equations defined in Banach spaces. The hypersingular integral equations belong to a wider class of singular integral equations having much more stronger singularities.The proposed approximation method is an extension beyond the quadrature method. Beyond the above, an error estimates theory is proposed...

متن کامل

Compact Numerical Quadrature Formulas for Hypersingular Integrals and Integral Equations

In the first part of this work, we derive compact numerical quadrature formulas for finite-range integrals I [f ] = ∫ b a f (x) dx, where f (x)= g(x)|x − t |β , β being real. Depending on the value of β, these integrals are defined either in the regular sense or in the sense of Hadamard finite part. Assuming that g ∈ C∞[a, b], or g ∈ C∞(a, b) but can have arbitrary algebraic singularities at x ...

متن کامل

A Nitsche-based domain decomposition method for hypersingular integral equations

We introduce and analyze a Nitsche-based domain decomposition method for the solution of hypersingular integral equations. This method allows for discretizations with non-matching grids without the necessity of a Lagrangian multiplier, as opposed to the traditional mortar method. We prove its almost quasi-optimal convergence and underline the theory by a numerical experiment.

متن کامل

The Linear Barycentric Rational Quadrature Method for Volterra Integral Equations

We introduce two direct quadrature methods based on linear rational interpolation for solving general Volterra integral equations of the second kind. The first, deduced by a direct application of linear barycentric rational quadrature given in former work, is shown to converge at the same rate, but is costly on long integration intervals. The second, based on a composite version of the rational...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Hokkaido Mathematical Journal

سال: 2006

ISSN: 0385-4035

DOI: 10.14492/hokmj/1285766365